A Moving Mesh Method Based on the Geometric Conservation Law
نویسندگان
چکیده
A new adaptive mesh movement strategy is presented, which, unlike many existing moving mesh methods, targets the mesh velocities rather than the mesh coordinates. The mesh velocities are determined in a least squares framework by using the geometric conservation law, specifying a form for the Jacobian determinant of the coordinate transformation defining the mesh, and employing a curl condition. By relating the Jacobian to a monitor function, one is able to directly control the mesh concentration. The geometric conservation law, an identity satisfied by any nonsingular coordinate transformation, is an important tool which has been used for many years in the engineering community to develop cell-volume-preserving finite-volume schemes. It is used here to transform the algebraic expression specifying the Jacobian into an equivalent differential relation which is the key formula for the new mesh movement strategy. It is shown that the resulting method bears a close relation with the Lagrangian method. Advantages of the new approach include the ease of controlling the cell volumes (and therefore mesh adaption) and a theoretical guarantee for existence and nonsingularity of the coordinate transformation. It is shown that the method may suffer from the mesh skewness, a consequence resulting from its close relation with the Lagrangian method. Numerical results are presented to demonstrate various features of the new method.
منابع مشابه
Helicopter Rotor Airloads Prediction Using CFD and Flight Test Measurement in Hover Flight
An implicit unsteady upwind solver including a mesh motion approach was applied to simulate a helicopter including body, main rotor and tail rotor in hover flight. The discretization was based on a second order finite volume approach with fluxes given by the Roeand#39;s scheme. Discretization of Geometric Conservation Laws (GCL) was devised in such a way that the three-dimensional flows on arbi...
متن کاملOn the Temporal and Spatial Accuracy of Spectral Difference Method on Moving Deformable Grids and the Effect of Geometric Conservation Law
In this paper we studied and examined the formulation of conservation laws on dynamic moving deforming meshes, in the context of the Geometric Conservation Law (GCL) compliant high order temporal and spatial methods. In particular, we implemented the high order explicit Runge-Kutta (ERK) as the time integrator, and the Spectral Difference (SD) method for the spatial discretization. In order to ...
متن کاملPii: S0045-7930(01)00095-0
The arbitrary Lagrangian Eulerian formulation is derived for the residual distribution method on moving meshes. The system of Euler equations is discretized on moving meshes and in case of deforming meshes a geometrical source term has to be taken into account. A conservative linearization guarantees the conservation property of the discretized equations. From the geometric conservation law we ...
متن کاملMoving Mesh Non-standard Finite Difference Method for Non-linear Heat Transfer in a Thin Finite Rod
In this paper, a moving mesh technique and a non-standard finite difference method are combined, and a moving mesh non-standard finite difference (MMNSFD) method is developed to solve an initial boundary value problem involving a quartic nonlinearity that arises in heat transfer with thermal radiation. In this method, the moving spatial grid is obtained by a simple geometric adaptive algorithm ...
متن کاملA Moving Mesh WENO Method for One-Dimensional Conservation Laws
In this paper, we develop an efficient moving mesh weighted essentially nonoscillatory (WENO) method for one-dimensional hyperbolic conservation laws. The method is based on the quasi-Lagrange approach of the moving mesh strategy in which the mesh is considered to move continuously in time. Several issues arising from the implementation of the scheme, including mesh smoothness, mesh movement re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 24 شماره
صفحات -
تاریخ انتشار 2002